In [1]:
%matplotlib inline

import pandas as pd
import matplotlib.pyplot as plt

# とりあえず生データを全部出力
data = pd.read_csv('d:/Temporary/civ4log.csv')
data
Out[1]:
ターン数 指導者 都市名 金銭 研究 文化 スパイ 生産 維持費
0 0 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
1 0 TXT_KEY_LEADER_HUAYNA_CAPAC TXT_KEY_CITY_NAME_CUZCO 0.0 9.0 2.0 4.0 2.0 0.0
2 0 TXT_KEY_LEADER_CYRUS TXT_KEY_CITY_NAME_PERSEPOLIS 0.0 9.0 2.0 4.0 2.0 0.0
3 0 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_WASHINGTON 0.0 9.0 2.0 4.0 2.0 0.0
4 0 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_AKSUM 0.0 9.0 4.0 4.0 1.0 0.0
5 0 TXT_KEY_LEADER_HAMMURABI TXT_KEY_CITY_NAME_BABYLON 0.0 10.0 2.0 4.0 1.0 0.0
6 0 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_BEIJING 0.0 9.0 2.0 4.0 2.0 0.0
7 1 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
8 1 TXT_KEY_LEADER_HUAYNA_CAPAC TXT_KEY_CITY_NAME_CUZCO 0.0 9.0 2.0 4.0 2.0 0.0
9 1 TXT_KEY_LEADER_CYRUS TXT_KEY_CITY_NAME_PERSEPOLIS 0.0 9.0 2.0 4.0 2.0 0.0
10 1 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_WASHINGTON 0.0 9.0 2.0 4.0 2.0 0.0
11 1 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_AKSUM 0.0 9.0 4.0 4.0 1.0 0.0
12 1 TXT_KEY_LEADER_HAMMURABI TXT_KEY_CITY_NAME_BABYLON 0.0 10.0 2.0 4.0 1.0 0.0
13 1 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_BEIJING 0.0 9.0 2.0 4.0 2.0 0.0
14 2 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
15 2 TXT_KEY_LEADER_HUAYNA_CAPAC TXT_KEY_CITY_NAME_CUZCO 0.0 9.0 2.0 4.0 2.0 0.0
16 2 TXT_KEY_LEADER_CYRUS TXT_KEY_CITY_NAME_PERSEPOLIS 0.0 9.0 2.0 4.0 2.0 0.0
17 2 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_WASHINGTON 0.0 9.0 2.0 4.0 2.0 0.0
18 2 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_AKSUM 0.0 9.0 4.0 4.0 1.0 0.0
19 2 TXT_KEY_LEADER_HAMMURABI TXT_KEY_CITY_NAME_BABYLON 0.0 10.0 2.0 4.0 1.0 0.0
20 2 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_BEIJING 0.0 9.0 2.0 4.0 2.0 0.0
21 3 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
22 3 TXT_KEY_LEADER_HUAYNA_CAPAC TXT_KEY_CITY_NAME_CUZCO 0.0 9.0 2.0 4.0 2.0 0.0
23 3 TXT_KEY_LEADER_CYRUS TXT_KEY_CITY_NAME_PERSEPOLIS 0.0 9.0 2.0 4.0 2.0 0.0
24 3 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_WASHINGTON 0.0 9.0 2.0 4.0 2.0 0.0
25 3 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_AKSUM 0.0 9.0 4.0 4.0 1.0 0.0
26 3 TXT_KEY_LEADER_HAMMURABI TXT_KEY_CITY_NAME_BABYLON 0.0 10.0 2.0 4.0 1.0 0.0
27 3 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_BEIJING 0.0 9.0 2.0 4.0 2.0 0.0
28 4 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
29 4 TXT_KEY_LEADER_HUAYNA_CAPAC TXT_KEY_CITY_NAME_CUZCO 0.0 9.0 2.0 4.0 2.0 0.0
... ... ... ... ... ... ... ... ... ...
12571 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_PHILADELPHIA 10.0 78.0 42.0 66.0 33.0 2.0
12572 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_ATLANTA 4.0 31.0 22.0 102.0 36.0 0.0
12573 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_CHICAGO 2.0 26.0 6.0 2.0 2.0 4.0
12574 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_SEATTLE 3.0 77.0 20.0 40.0 33.0 6.0
12575 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_CUZCO 4.0 33.0 2.0 44.0 48.0 4.0
12576 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_DEBRE_BERHAN 0.0 11.0 0.0 32.0 6.0 6.0
12577 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_MACHU 16.0 59.0 32.0 44.0 54.0 5.0
12578 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_BORSIPPA 2.0 18.0 12.0 44.0 38.0 4.0
12579 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_MARI 2.0 18.0 16.0 44.0 78.0 5.0
12580 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_HUAMANGA 3.0 43.0 4.0 0.0 18.0 11.0
12581 361 TXT_KEY_LEADER_ROOSEVELT TXT_KEY_CITY_NAME_TIWANAKU 3.0 31.0 2.0 0.0 12.0 8.0
12582 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_AKSUM 44.0 150.0 63.0 52.0 83.0 1.0
12583 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_GONDAR 10.0 137.0 32.0 44.0 65.0 2.0
12584 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_LALIBELA 8.0 64.0 13.0 44.0 23.0 2.0
12585 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_ADDIS_ABABA 4.0 43.0 12.0 44.0 73.0 1.0
12586 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_YEHA 3.0 35.0 8.0 2.0 1.0 2.0
12587 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_NAVAJO 1.0 16.0 2.0 0.0 6.0 2.0
12588 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_ADULIS 0.0 6.0 3.0 44.0 28.0 1.0
12589 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_QOHAITO 2.0 23.0 6.0 0.0 1.0 4.0
12590 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_MATARA 2.0 26.0 3.0 6.0 1.0 1.0
12591 361 TXT_KEY_LEADER_ZARA_YAQOB TXT_KEY_CITY_NAME_HAWULTI 2.0 21.0 3.0 0.0 2.0 3.0
12592 361 TXT_KEY_LEADER_HAMMURABI TXT_KEY_CITY_NAME_AKKAD 10.0 61.0 25.0 111.0 35.0 0.0
12593 361 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_BEIJING 54.0 162.0 40.0 52.0 44.0 1.0
12594 361 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_SHANGHAI 31.0 78.0 16.0 24.0 30.0 5.0
12595 361 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_SIPPAR 10.0 26.0 8.0 0.0 15.0 7.0
12596 361 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_NANJING 12.0 31.0 21.0 0.0 21.0 4.0
12597 361 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_XIAN 11.0 28.0 8.0 0.0 3.0 7.0
12598 361 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_CHENGDU 9.0 25.0 7.0 2.0 10.0 3.0
12599 361 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_OPIS 7.0 19.0 18.0 0.0 3.0 5.0
12600 361 TXT_KEY_LEADER_QIN_SHI_HUANG TXT_KEY_CITY_NAME_GUANGZHOU 5.0 9.0 7.0 40.0 27.0 5.0

12601 rows × 9 columns

In [2]:
# AIのデータは邪魔なので除外
data = data.query("指導者 == 'kojim'")
data
Out[2]:
ターン数 指導者 都市名 金銭 研究 文化 スパイ 生産 維持費
0 0 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
7 1 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
14 2 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
21 3 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
28 4 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
35 5 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
42 6 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
49 7 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
56 8 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
63 9 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
70 10 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
77 11 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
84 12 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
91 13 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
98 14 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
105 15 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
112 16 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
119 17 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
126 18 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
133 19 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
140 20 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
147 21 kojim TXT_KEY_CITY_NAME_DELHI 0.0 11.0 2.0 4.0 1.0 0.0
154 22 kojim TXT_KEY_CITY_NAME_DELHI 0.0 11.0 2.0 4.0 1.0 0.0
161 23 kojim TXT_KEY_CITY_NAME_DELHI 0.0 11.0 2.0 4.0 1.0 0.0
168 24 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 1.0 0.0
175 25 kojim TXT_KEY_CITY_NAME_DELHI 0.0 11.0 2.0 4.0 1.0 0.0
182 26 kojim TXT_KEY_CITY_NAME_DELHI 0.0 11.0 2.0 4.0 1.0 0.0
189 27 kojim TXT_KEY_CITY_NAME_DELHI 0.0 10.0 2.0 4.0 5.0 0.0
196 28 kojim TXT_KEY_CITY_NAME_DELHI 0.0 17.0 2.0 4.0 6.0 0.0
203 29 kojim TXT_KEY_CITY_NAME_DELHI 0.0 17.0 2.0 4.0 6.0 0.0
... ... ... ... ... ... ... ... ... ...
11190 332 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1354.0 2304.0 78.0 444.0 0.0
11237 333 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1354.0 2304.0 78.0 444.0 0.0
11284 334 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1354.0 2304.0 78.0 444.0 0.0
11331 335 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 378.0 0.0
11378 336 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 378.0 0.0
11425 337 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 378.0 0.0
11472 338 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 378.0 0.0
11519 339 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 378.0 0.0
11566 340 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 324.0 0.0
11613 341 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 378.0 0.0
11660 342 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 378.0 0.0
11707 343 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 324.0 0.0
11754 344 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 388.0 0.0
11801 345 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 388.0 0.0
11848 346 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 388.0 0.0
11895 347 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 333.0 0.0
11942 348 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1253.0 2304.0 78.0 333.0 0.0
11989 349 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1242.0 2304.0 78.0 333.0 0.0
12036 350 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1368.0 2304.0 78.0 390.0 0.0
12083 351 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1368.0 2304.0 78.0 520.0 0.0
12130 352 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1368.0 2304.0 78.0 520.0 0.0
12177 353 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1368.0 2304.0 78.0 390.0 0.0
12224 354 kojim TXT_KEY_CITY_NAME_DELHI 108.0 1368.0 2304.0 78.0 390.0 0.0
12272 355 kojim TXT_KEY_CITY_NAME_DELHI 112.0 850.0 2304.0 522.0 390.0 0.0
12319 356 kojim TXT_KEY_CITY_NAME_DELHI 112.0 850.0 2304.0 522.0 390.0 0.0
12366 357 kojim TXT_KEY_CITY_NAME_DELHI 112.0 850.0 2304.0 522.0 390.0 0.0
12413 358 kojim TXT_KEY_CITY_NAME_DELHI 112.0 850.0 2304.0 522.0 390.0 0.0
12460 359 kojim TXT_KEY_CITY_NAME_DELHI 112.0 850.0 2304.0 522.0 390.0 0.0
12507 360 kojim TXT_KEY_CITY_NAME_DELHI 112.0 850.0 2304.0 522.0 390.0 0.0
12554 361 kojim TXT_KEY_CITY_NAME_DELHI 112.0 871.0 2315.0 438.0 333.0 0.0

362 rows × 9 columns

In [3]:
# 雑にグラフにしてみる
data.plot.bar(x='ターン数', y=['金銭', '研究', '文化', 'スパイ'], alpha=0.6, figsize=(24,8))
plt.title('OCC都市出力', size=16)
Out[3]:
<matplotlib.text.Text at 0x8947d30>
In [4]:
# 重要な研究力と生産力に絞ってグラフ化
data = data.query("ターン数%5 == 0")
data.plot.bar(x='ターン数', y=['研究', '生産'], alpha=0.6, figsize=(24,8))
plt.title('OCC都市出力', size=16)
Out[4]:
<matplotlib.text.Text at 0x8fc9dd8>
In [ ]: